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ABSTRACT
With respect to the rise of geo-referenced databases, their increased complexity and their 
upsurge in size, this contribution describes DfP, an OPeNDAP server able to serve 
petabytes of heterogeneous geo-referenced data in a homogeneous, quality-controlled, 
performance-guaranteed, and standard-conformant way.
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INTRODUCTION
Thanks to new missions, new captors and model refinements, geosciences are producing more and more  
data. It is admitted that, on average, data production rate doubles each year [1]. Moreover, these data are  
heterogeneous,  as  they  cover  various  fields  like  oceanography,  geology,  atmospheric  sciences,  
seismology, etc...

Geosciences have reached a point where storing, accessing and sharing the data they produce causes  
concern.

With respect to access and sharing, during the last decade, tremendous progresses have been achieved in  
metadata  catalogs  interoperability  through  standardization  efforts:  Open  GeoSpatial  Consortium 
standards, ISO-19100 family, INSPIRE, CCSDS ([2], [3]), to name a few.

On the other hand, storage itself is still a challenge.

It is now not uncommon to have to deal with hundreds of terabytes or even petabytes of data. At this  
scale,  data  is  spanned  over  hundreds  or  thousands  of  disks,  and  this  brings  new  issues.  Requests  
atomicity, database consistency, failure tolerance, system administration, overall system performance and 
global power consumption have to be carefully examined1.

This note describes DfP, an OPeNDAP [8] server currently developed at Auvéa Ingénierie able to serve 
petabytes  of geo-referenced heterogeneous data (§  Service presentation).  A first  proof-of-concept has 
been implemented [9], and some challenges and development perspectives are exposed (§ Challenges) .

SERVICE PRESENTATION
Target users community is geoscientists at large, be there oceanographers, climatologists, seismologist,  
geologists,  biogeochemists,  etc...  In  these  fields,  datasets  are  geo-referenced,  multi-dimensional  and 
array-oriented (including images).

Geo-referenced data is any data that has a geographical extent. That said, it has a wide variety of flavors.  
Structures, formats, spatial reference systems, types, units, precisions, parameter names, etc... vary across  
application fields and thus databases.

1 Non-technical aspects such like system security,  copyrights or intellectual property of databases are out of the  
scope of  this  paper  and  are  intentionally  left  apart,  even  though they are  obviously taken  into account  during 
implementation.
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As it is a quite standard process in geosciences, we will consider  databases are incrementally built by 
adding datasets. All datasets in a database share a common structures: parameter names, format, types,  
etc...  A model run or satellites sensors, for example, append datasets as they are computed or acquired,  
respectively.

OPeNDAP is a protocol to access databases of multi-dimensional arrays. While having some limitations 
[4],  it  is  a  de facto standard,  as it  is  widely used in target  communities,  and is  available in a  large 
spectrum of applications:  virtually all  GIS applications (through GDAL bindings),  MATLAB/Octave,  
IDL, GrADS, FERRET, OceanDataView, GoogleEarth...

Current OPeNDAP implementations focus on serving datasets, not databases. This can be awkward for 
users, as they need to know and understand how (and sometimes, when), datasets are produced to extract  
data  they  need,  and,  still,  the  process  can  be  cumbersome.  Also,  from the  producer  point  of  view,  
scalability is an issue.

Proposed OPeNDAP service, beyond simply aggregating datasets, makes data easily and conveniently 
accessible,  and is  able to serve databases at  the petabyte  scale.  This paper focuses on the “Archival  
Storage”, “Data Management”, and “Preservation Planning” functional entities in the OAIS functional 
Model (c.f. figure 1).

All  along conception,  we adopted “pragmatic  design”:  privileging today solutions  over  promises  for  
tomorrow. That is, implementation is running with current softwares on current hardware, using current  
file formats and protocols.

Briefly put,  DfP holds  metadata  and geographical  extent  of  each dataset  in  a relational  GIS-enabled  
database,  classically,  and  store  data  themselves  in  a  sharded  key-value  database.  On  request,  an 
orchestrator queries the RDBMS that returns datasets that  may have values corresponding to selection, 
then query dataset servers to introspect each dataset for finer results, and finally aggregate results (figure 
2).

Preliminary tests [5] were done using a 2TB database of global ¼-degree model output from Finite-State 
Lyapunov Exponents as describe in [6] and [7].
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Figure 1: OAIS Functional Model (from [3])



CHALLENGES

Usability
First things first, accessing data means being able to conveniently describe wanted data, and retrieve it in 
an acceptable time-frame and in a practical format.
 Query syntax and web interface

Hosted databases can be queried with DAP syntax. A DAP query consist of a projection and a selection 
[8].  Projection is a list  of parameters the user wants to retrieve.  Selection describes the geographical 
extent, date range, and any other constraints.

For example, say we have the following databases available:
 AIR, with a parameter “temperature”, that holds air temperature at the given location;

 MODIS [11], with a parameter “snow” set to 1 if snow coverage is detected, 0 otherwise;

 COUNTRY, with a parameter “name” that, for given latitude and longitude, holds the name of the 
country.

Say user wants localized air temperature (i.e. projection is “longitude,latitude,date,AIR.temperature”) in 
bounding box with corner coordinates (0.77, 42.59) and (1.66, 43.21), from 1st January 2000 to 1st January 
2001, but only where snow was detected and limit results to  France. The DAP query will be:

longitude,latitude,date,AIR.temperature&latitude<43.21&latitude>42.59&longitude<1.66&
longitude>0.77&date>20000101&date<20010101&MODIS.snow=1&COUNTRY.name=FRANCE

We believe this to be quite simple and efficient. Moreover, a web-based interface will be available to  
interactively build such queries.
 Response time

Response time is a key issue when dealing with huge amount of data. No guarantee can be made besides  
best-effort.  That  said,  network architecture and processing power  can scale so that  service  outbound 
throughput is maximized (c.f. § Scalability).
 File formats

Regarding file formats, each user has its own preferences, depending on its habits, its research field or the  
software she uses. OPeNDAP allows several formats including DODS, HDF, NetCDF, ASCII and KML. 
As file generation is the last step in query response, and does not depend on how datasets are effectively 
stored, we have all freedom to implement any file formats, even streamable ones.
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Storage
As said in the introduction, annual data-growth rate is 100%. On the other hand, storage technologies  
follow Kryder's Law, that states that storage density grows at an annual rate of 40% [10]. That means that  
we can't expect solutions for storing petabytes from pure hardware improvements. Fortunately, very large 
scale  storage solutions  has  emerged during past  few years.  Key-value stores,  like  CouchDB [12]  or  
OpenStack/Swift [13] are able to efficiently store  petabytes of data. They do so by sticking to a minimal  
semantic. Unlike distributed filesystems or relational databases, they avoid locks, have minimal access 
control management, or even are “eventually consistent”.

How can key-value stores, also known as sharded databases, benefit to geo-referenced databases ?

First,  we have to examine their limitations. Sharded databases are very efficient to store and retrieve  
relatively small objects (several megabytes, in general), but they will not store multi-gigabytes datasets  
without losing their competitive advantage over filesystems. Also, they do not comply with ACID model, 
as  relational  databases  do.  That  is,  operations  can't  be  altogether  Atomic,  Consistent,  Isolated  and 
Durable.

Therefore, to ensure good storage scalability,  we must  enforce maximum stored object size, and live  
without guaranteed consistency.

 Keeping stored object size under control

A global parameter of the system is the optimal stored object size. From hundreds of kilobytes to several 
megabytes, depending on database and hardware used.

When adding a dataset to a database, import module first considers its parameters. Each parameter is  
stored  in  a  different  object  in  the  store,  with  a  simple  naming  scheme.  For  example 
“/database_name/dataset_id/parameter_name”. If resulting object is larger than the optimal object size, it 
is recursively splitted along longitude and latitude, and then along parameter dimensions, until object has 
an appropriate size (figure 3).

Naming scheme is then like “/database_name/dataset_id/parameter_name/tile_id”.

Such a binary-tiling is not unlike QuadTiles as used in OpenStreetMap for images [14], or  a generalized 
REG-REG tiling as implemented in ArrayStore [15].

Splitting along longitudes and latitudes is absolute. It does not depend on geographical extent of dataset,  
so that tile_id can be compared across databases. Moreover, a carefully chosen binary naming scheme  
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allows, along compactness, tile manipulations using only binary algebra, without the need of database 
lookup nor tree traversal, not even trigonometry (see figure 4).

With this kind of tiling, we can spread datasets among as many storage nodes as we want. This will be  
helpful when considering balanced computing (c.f. § Scalability).

 Atomicity and Isolation

Very much like in SciDB [16], we don't want a full ACID model, as this would require fully synchronous 
operations, that don't scale well.

Instead,  a  partially  synchronous  model  is  used,  implemented  on  top  of  an  asynchronous  framework  
(twistedmatrix in our preliminary implementation). As shown in [17], we can build an atomic, isolated  
and durable scalable system, with some compromises on consistency. Care must be taken on how to do 
this. Particularly, adding a dataset must be an atomic operation. That is, metadata should hit the metadata  
database only when data has been successfully uploaded to the dataset storage. This implies that database 
and key-value store can be be isolated from each other except at at ingest time.

Scalability
System  scalability  has  software  as  well  as  hardware  constraints.  Carefully  designing  software  and 
balancing hardware will optimize costs and performance ([18], [19]). At thousands of nodes scale, we  
must also consider hardware failure detection issue.

 Balanced computing 

Storage scalability was exposed in previous paragraph. Aside from storage, computational power and data  
throughputs should scale as well. Geosciences have, indeed, data-intensive workloads. That is, processor 
operations  need  data.  High  data-intensive  workload  is  defined  as  having  very  low  floating  point  
operations (between 0 and 10) per byte of input data [4]. GPU-computing epiphany increased even more 
pressure on data paths. 
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As storage is already spread among a huge number of nodes, these nodes are also used to do server-side 
computations, thus aggregating data paths (disk to memory, memory to cpu, cpu to network and node to 
node). Balanced with network throughputs, we have large freedom in hardware choices.

Moreover,  considering that  “electricity costs (will)  soon exceed the purchase price of the computing  
hardware” [20], power efficiency of the solution must also be considered. Having very parallel processes 
and data flows alleviate the need of power-dissipating hardware, and low-power components can be used 
almost everywhere in the storage cluster.

Reference installation is running on several servers. Each one is made of low-power dual-core CPU, with  
three  “green”  SATA disks  attached  (aggregated  throughput  [21]  of  300MB/s),  DDR3-800  SDRAM 
(6.4GB/s) and 1Gb/s network (125MB/s), all through PCI-Express 2.0 links (2GB/s), for an estimated  
power of about 50W. For WMS map generations, as seen in [22], outbound 1Gb/s link is saturated as 
soon as we have two nodes in storage cluster, while in-cluster network throughputs are balanced between 
nodes. Further experiments will show how far this will linearly scale, but we believe that we could output  
WMS queries at 10Gb/s from 30TB of data with less than 20 nodes and less than 1kW of electrical  
power.

 Byzantine processes

Another aspect of scalability is undetected errors. On a cluster of thousands of nodes, hardware failure  
will occur. Most components have failure detection (S.M.A.R.T. and RAID for disks, ECC for memories,  
checksums  for  network  packets,  etc...),  but  we  need  more  global  monitoring  to  detect  and  isolate 
byzantine nodes.

Solution is to benefit from storage redundancy. For example, OpenStack/swift requires data to be stored 
on at least three servers (and advise against using RAID for disks). Noting that dataset extractions are  
deterministic, orchestrator can ask several nodes to perform the same task, and compare results. This lead 
to twice the computations, but not necessarily twice the network: a checksum-hash of the result can be  
asked to one node, and, on the other hand, computed with data received from another. A standard ballot  
mitigation is then used to detect which node shows byzantine behavior.

Server-side computations
As describe in [4], clustered server-side computations will benefit of locality of data and parallelism, but  
comes with its own set of problems. While some operations are by nature “embarassingly  parallel” (e.g. 
image generation), others need algebraic work to perform in parallel (e.g. NCO).
 Image generations

A WMS request barely only builds images. Implemented OPeNDAP server already distributes workload 
among nodes to build tile-based sub-images, that are then aggregated in the orchestrator layer's cache and 
finally compressed in the protocol layer to wanted image file format.

 NetCDF Operators

NCO, NetCDF Operators,  is a set  of  operators commonly used in geosciences to perform arithmetic  
operations and data permutation on datasets [23]. With pragmatic design in mind, it defines the set of  
operations that we need to implement in DfP. Parallelization of such operators is not trivial, and we are  
planning  SWAMP [4] integration to achieve this.

Long-term preservation
Datasets, as uploaded by producers, must be saved on the long run. This is the “Preservation planning” 
part in the OAIS model (figure 2).

They don't obey the same access schema as on-line, operational ones. We believe that there will be far  
less  downloads  of  these  original  datasets.  Because  they  are  in  random formats  (HDF,  spreadsheet,  
GRIBS,  proprietary,  etc...),  may  be  hard  to  interpret  (random geodesic  reference  system,  time-base, 
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etc...), and even hard to find. Nonetheless, some may find useful to be able to get them. Also, we must  
keep them for reference, future reprocessing, and, more importantly preservation.

Preservation,  that  is not  simple backup, has three main objectives [24]:  keep the document,  preserve 
intelligibility and make it accessible.

Keeping the datasets does not have the performance constraint that we have for extractions, computations 
and  operational  use.  We  don't  necessary  have  to  shard  files  and  maintain  some  home-brewed 
reconstruction software. In fact, we instead have to use a standard, open and reliable storage. Distributed  
file systems (AFS, ZFS, GFS, and many others) are solutions of choice. A large user base ensures that, in  
a foreseeable future, we will be able to find manpower to retrieve these data. Similarly, open standards  
and non-commercial-closed solutions ensure that we will have software to do so.

Preserving  intelligibility  means  data  will  be  understandable  even  if  metadata  database  is  lost  or 
inaccessible. Briefly put, we have to store data and its metadata together. A simple human-readable meta-
metamodel is used for metadata format description (in XML or JSON, for example).

Retrieving filesystem-based archives is a matter of Universal Resource Location (URL) naming scheme, 
and some basic web-based portal to access these. Proposed server stores archived datasets URLs as part 
of datasets metadata, and make them accessible via the same web portal. At ingest time, a zipped archive  
is  generated  with  data  and  metadata  and  is  made  available  at  an  URL  of  the  form 
“/orig/database_name/dataset_id.zip”.

CONCLUSION
Most data portals only consider metadata, leaving data publication and conservation responsibilities to 
producers. Moreover, current OPeNDAP  implementations have hard time when dealing with petabytes  
of data, making data exploitation cumbersome if not haphazard.

This paper described general data-flow and scalability for a petabyte-scale durable data warehouse.

Preliminary implementation of described OPeNDAP server has permitted us to validate feasibility and to 
tackle with real-world problems [5]. Still,  more work has to be done for reaching a production-grade 
service.
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